РЕАЛИЗАЦИЯ МЕТОДОВ ИМПУЛЬСНОЙ ЭЛЕКТРОРАЗВЕДКИ АНИЗОТРОПНЫХ НЕОДНОРОДНОСТЕЙ ПЛАЗМОПОДОБНОГО ТИПА

Иванова Е.Ю., Гололобов Д.В.

Научный руководитель: канд. техн. наук, доц. Гололобов Д.В. Белорусский государственный университет информатики и радиоэлектроники, Беларусь E-mail: Solnushkoo @mail.ru

Аннотация — Приведена обобщенная методика реализации электромагнитных методов поиска анизотропных неоднородностей, заключающаяся в анализе временных и частотных искажений отраженной волны.

1. Введение

Результаты численных исследований взаимодействия импульсных сигналов и анизотропных неоднородностей плазмоподобного типа (АНПТ) свидетельствуют о возможности решения задачи поиска таких неоднородностей с использованием регистрации искажений импульсного сигнала в пределах одного информационного канала. При этом можно сформулировать требования к новым методам электроразведки сводящимся к следующему.

Реализация методов основывается как на трансформации ЭМП во временной области, так и на искажениях спектральной характеристики импульсного сигнала. Временные и частотные искажения сигнала являются функцией электродинамических параметров подстилающей среды и формируемых условий распространения радиоволн (РРВ).

2. Основная часть

Обобщенная структурная схема реализации методов показана на рис. 1. Схема содержит базовую станцию (БС), которая, как правило, является стационарной. Антенна БС находится на фиксированной высоте подвеса h_1 . Измерительная станция (ИС) имеет фиксированную высоту подвеса h_2 (которая может отличаться от h_1) и перемещается вдоль оси 0X.

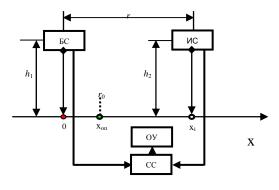


Рис. 1

ИС фиксирует значение амплитуды напряженности электрического поля с привязкой к времени t_i и координатам \mathbf{x}_i то есть

$$E = E(t_i, x_i) \rightarrow S(f, t_i, x_i)$$

или

$$E = E(t_i, x_i) \rightarrow C_n(f, t_i, x_i).$$

Копия неискаженного ИС с БС имеет характеристики

$$E = E_0 \rightarrow S_0(f)$$

или

 $E=E_0\to C_{n0}(f).$

На схеме сравнения СС определяют отношение или разность амплитуд на фиксированной частоте или нескольких частотах спектра

$$\Delta s_1 = |s_0(f_1) - s(f_1, t_i, x_i)|;$$

$$\Delta C_m = |C_{m0}(f_1) - C_m(f_1, t_i, x_i)|, m \neq n,$$

или нескольких частотах спектра

$$\Delta s_p = |s_0(f_p) - s(f_p, t_i, x_i)|, p = 0, 1, 2, 3...;$$

$$\Delta C_{mp} = \left| C_{m0}(f_p) - C_m(f_p, t_i, x_i) \right|, m \neq n.$$

Можно провести сравнение формируемого ИС и отраженного от исследуемой среды в фиксированный момент времени T_a

$$\Delta E(T_q) = |E_0(f, T_q) - E(f, t_i, x_i, T_q)|,$$

или ряде временных точек

$$\Delta E(T_{V}) = \mid E_{0}(f, T_{V}) - E(f, t_{i}, x_{i}, T_{V}) \mid$$
, где $\gamma = q, q$ +1, q +2...

3. Заключение

Представленная методика оценки искажений импульсных сигналов позволяет повысить достоверность определения границ АНПТ в пределах одного канала. При сравнении дискретных оценок временных и спектральных искажений с архивными данными способствует решению элементов задачи идентификации

4. Список литературы

- [1] Гололобов Д.В. Изменение отражательных характеристик анизотропных сред при вариациях параметров наполнителя: линейная поляризация / Д.В. Гололобов, Е.Ю. Иванова, В.Б. Кирильчук // Доклады БГУИР. 2012. № 6(68). С. 5 11.
- [2] Качан И.А. Оценка контраста отражательных характеристик анизотропной и изотропной сред / И.А. Качан, Е.Ю. Иванова, Д.В. Гололобов // Мат. 8-ой Междунар. молодежной научно-технической конф. «Современные проблемы радиотехники и телекоммуникаций» (РТ-2012). Севастополь: Изд-во СевНТУ, 2012. С. 403.

IMPLEMENTATION OF THE METHOD OF A PULSE ELECTROMETRY OF PLASMA TYPE ANISITROPIC INHOMOGENEITIES

Ivanova E.Y., Gololobov D.V. Scientific adviser: Gololobov D.V. Belarusian State University of Informatics and Radioelectronics, Belarus

Abstract — The implementation of electromagnetic methods of search of the anisotropic inhomogeneities is considered. It based on the analysis of time and frequency distortions of the reflected wave.