УЗКОПОЛОСНАЯ КОРРЕКЦИЯ МУЛЬТИПЛИКАТИВНОЙ ПОГРЕШНОСТИ ЦИФРОВОГО АЛГОРИТМА ОПРЕДЕЛЕНИЯ КОМПЛЕКСНОГО КОЭФФИЦИЕНТА ОТРАЖЕНИЯ

Зебек С.Е.

Научный руководитель: д-р техн. наук, проф. Гимпилевич Ю.Б. Севастопольский национальный технический университет E-mail: stanislavzebek@mail.ru

Аннотация — Предложен усовершенствованный алгоритм для определения модуля и аргумента комплексного коэффициента отражения на основе дискретного преобразования Фурье.

1. Введение

Известен цифровой алгоритм определения модуля и аргумента комплексного коэффициента отражения (ККО) микроволновых узлов [1]. Недостатком этого алгоритма является то, что мультипликативная погрешность корректируется с использованием постоянной составляющей спектра. Это приводит к влиянию дрейфа нуля усилителя постоянного тока. Устранить этот недостаток можно путем формирования узкополосного корректирующего сигнала.

2. Основная часть

Для обеспечения возможности узкополосной коррекции предлагается выделять из спектра дискретного сигнала четвертую гармонику. Для этого увеличим число отчетов до N=16. В ЭВМ сформируем следующую последовательность отсчетов

$$S_{k} = \begin{cases} U_{0} = KE_{\Pi}^{2}(1+\Gamma^{2}+2\Gamma\cos\varphi) & \text{при } k=0,1; \\ 0 & \text{при } k=2,3; \\ U_{1} = KE_{\Pi}^{2}(1+\Gamma^{2}-2\Gamma\sin\varphi) & \text{при } k=4,5; \\ 0 & \text{при } k=6,7; \\ U_{2} = KE_{\Pi}^{2}(1+\Gamma^{2}-2\Gamma\cos\varphi) & \text{при } k=8,9; \\ 0 & \text{при } k=10,11; \\ U_{3} = KE_{\Pi}^{2}(1+\Gamma^{2}+2\Gamma\sin\varphi) & \text{при } k=12,13; \\ 0 & \text{при } k=14,15, \end{cases}$$
 (1)

где K— коэффициент преобразования; $E_{\rm n}$ — амплитуда падающей волны; Γ, ϕ — модуль и аргумент комплексного коэффициента отражения; $U_0...U_3$ — напряжения на выходе детекторной секции при использовании четырехзондовой измерительной линии, k=0,1,2...N-1 [2].

Проведем дискретное преобразование Фурье (ДПФ) [3] последовательности отсчетов (1) и определим комплексные амплитуды четвертой C_4 и первой C_1 гармоник этой последовательности

$$C_4 = \frac{1}{16} \sum_{n=0}^{15} S_k e^{-j\frac{\pi}{2}k} = \sqrt{2} K E_n^2 (1 + \Gamma^2) e^{-j\frac{\pi}{4}};$$
 (2)

$$C_1 = \frac{1}{16} \sum_{0}^{15} S_k e^{-j\frac{\pi}{8}k} = \sqrt{2 + \sqrt{2 + \sqrt{2}}} K E_i^2 \Gamma e^{j(\phi - \theta)}.$$
 (3)

Решая систему, составленную из уравнений (2) и (3), относительно Γ и φ , получаем

$$\Gamma = \frac{m|C_4|}{2|C_1|} - \sqrt{\left(\frac{m|C_4|}{2|C_1|}\right)^2 - 1};$$
(4)

$$\varphi = \arg(C_1) + \theta, \tag{5}$$
 где $m = \sqrt{1 + \frac{\sqrt{2 + \sqrt{2}}}{2}} \approx 1{,}39$; $\theta = \arctan\left(\frac{\sqrt{2 - \sqrt{2}}}{2 + \sqrt{2 + \sqrt{2}}}\right) \approx 0{,}2$.

Из формулы (3) следует, что изменение амплитуды падающей волны ($E_{\rm n}$) и коэффициента преобразования K не приводит к изменению результата измерения модуля ККО, то есть осуществляется коррекция мультипликативной погрешности. Аргумент ККО в соответствии с формулой (5) с точностью до константы θ совпадает с величиной аргумента коэффициента $C_{\rm 1}$. Константа θ определяется при калибровке прибора (например, по короткозамыкателю). Разработанный алгоритм позволяет применить при обработке два узкополосных цифровых фильтра, что существенно уменьшит влияние, то есть повысит точность измерения.

3. Заключение

Таким образом, путем увеличения частоты дискретизации и соответствующим формированием дискретного сигнала в спектре получена четвертая гармоника, которая использована для коррекции мультипликативной составляющей погрешности измерении. Показана возможность применения дополнительных цифровых фильтров для уменьшения влияния шумов на результат измерения.

4. Список литературы

- [1] Зебек С.Е. Применение дискретного преобразования Фурье в задаче измерения комплексного коэффициента отражения / С.Е. Зебек // Мат. 8-ой Междунар. молодежной научно-технической конф. «Современные проблемы радиотехники и телекоммуникаций» (РТ-2012). Севастополь: Изд-во СевНТУ, 2012. С. 296.
- [2] Гимпилевич Ю.Б. Измерение и контроль параметров микроволновых трактов / Ю.Б. Гимпилевич. Севастополь: изд-во СевНТУ, 2009.— 293 с.
- [3] Баскаков С.И. Радиотехнические цепи и сигналы/ С.И. Баскаков — М.: Высшая школа, 1988. — 448 с.

NARROWBAND CORRECTION OF THE MULTIPLICATIVE ERROR OF A DIGITAL ALGORITHM FOR DETERMINING THE COMPLEX REFLECTION COEFFICIENT

Zebek S. E.

Scientific adviser: Gimpilevich Y.B. Sevastopol National Technical University, Ukraine

Abstract — The improved algorithm for determining the modulus and argument of the complex reflection coefficient based on the discrete Fourier transform is proposed.