ПРЕОБРАЗОВАТЕЛЬ БИНОМИАЛЬНЫХ КОМБИНАЦИЙ В КВАЗИРАВНОВЕСНЫЙ КОД

Скордина Е.М., Каплин И.А. Научный руководитель: канд. техн. наук, доц. Кулик И.А. Сумский государственный университет, Украина E-mail: eskordina @ekt.sumdu.edu.ua

Аннотация — Рассмотрена практическая реализация преобразования биномиальных комбинаций в квазиравновесные. Приведена схема устройства преобразования равномерных биномиальных комбинаций в квазиравновесные.

1. Введение

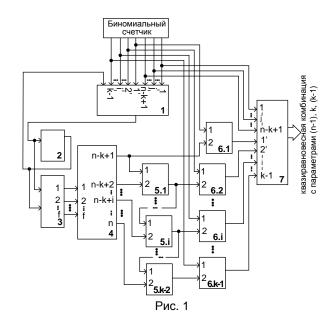
На сегодняшний день актуальной является разработка устройств помехоустойчивого кодирования для телекоммуникационных систем. Одним из малоизученных способов помехоустойчивого кодирования являются методы с использованием биномиальных систем счисления.

В работе предлагается практическая реализация одного из методов кодирования, который основан на использовании двоичных биномиальных чисел как промежуточных. Приводится схема преобразователя кодов, который реализует преобразование биномиальных чисел с параметрами n и k, где n, k — параметры биномиальной системы счисления, в квазиравновесный код с параметрами: n_k — длина комбинации, k, (k-1) — числа двоичных единиц.

2. Основная часть

Подход к формированию квазиравновесных кодов на основе равномерных биномиальных чисел с параметрами был предложен в работе [1]. В работе [2] были предложены модели процессов перечисления и генерирования кодов-сочетаний с заданным ограничением $R_{_{V}}$. В случае квазиравновесных кодов указанное ограничение будет иметь $R_{V} = (k, k-1)$. Для дальнейшего изучения методов формирования квазиравновесных комбинаций необходимо рассмотреть и провести анализ способов их практической реализации. Это позволит построить эффективные кодирующие и декодирующие устройства на базе квазиравновесных кодов для применения в телекоммуникационных системах.

В основе модели генерирования квазиравновесных комбинаций лежит преобразование вида:


$$Y_i[k-1,k] = f^{-1}(F_i) = \varphi(\psi^{-1}(F_i)),$$

где ϕ — прямое отображение множества X биномиальных чисел X_j на множество Y квазиравновесных комбинаций Y_j ; ψ^{-1} — обратное отображение множество F номеров F_j на множество X чисел X_j , где $j=\overline{0,C_n^k-1}$. Отображения ϕ и ψ^{-1} позволяют на практике реализовать устройство, преобразующее биномиальные комбинации в квазиравновесные.

На рис.1 изображена схема устройства преобразования биномиальных чисел с параметрами n и k в квазиравновесные комбинации с параметрами n_k ,

k, (k-1), которая реализует отображения φ и ψ^{-1} .

Преобразователь кода включает блок биномиального счетчика, преобразователь 1 параллельного кода в последовательный, счётчик 2 нулей (коэффициент счёта равен n-k), счётчик 3 количества разрядов (коэффициент счёта равен r, где $n-k \le r \le n$), дешифратор 4, (k–2) элемента ИЛИ, (k–1) элементы ИСКЛЮЧАЮЩЕЕ-ИЛИ, регистр хранения 7, квазиравновесная комбинации снимается с выходной шины регистра хранения 7.

3. Заключение

Таким образом, на основе биномиальных преобразований разработан преобразователь кода, формирующий квазиравновесный код с использованием биномиальных комбинаций. Преобразователь имеет регулярную структуру, достаточно высокое быстродействие и позволяет увеличить информационную мощность используемого кода.

4. Список литературы

- [1] Кулик И.А. Формирование квазиравновесных кодов на основе двоичных биномиальных чисел / Е.М. Скордина, С.В. Костель // Вісник СумДУ. Технічні науки. Сумы: СумГУ. 2010. С. 134 142.
- [2] Кулик И.А. Модели процессов перечисления и генерирования кодов-сочетаний для решения сетевых задач / Е.М. Скордина, С.В. Костель // Мат. 22-й Международной Крымской конференции «СВЧ-техника и телекоммуникационные технологии». Севастополь: Вебер, 2012. С. 351 352.

CONVERTER OF BINOMIAL CODEWORDS INTO A QUASI-CONSTANT WEIGHT CODE

Skordina O.M., Kaplin I.O. Scientific adviser: Kulyk I.A. Sumy State University, Ukraine

Abstract — A practice realization of the transformation of binomial codewords into quasi-constant weight codewords are considered. The scheme of the code converter for the equal-length binomial codeword into the quasi-constant weight codeword is proposed.